Sains Malaysiana 52(12)(2023): 3343-3355

http://doi.org/10.17576/jsm-2023-5212-01

 

Using Circuit Theory, Connectivity Analysis and Least-Cost Path to Model the Potential Ecological Corridors of Malayan Tapir (Tapirus indicus) at Chini-Bera Forest Complex in Pahang, Peninsular Malaysia

(Penggunaan Teori Litar, Analisis Ketersambungan dan Laluan Kos Minimum untuk Memodelkan Potensi Koridor Ekologi Tapir Malaya (Tapirus indicus) di Kompleks Hutan Chini-Bera, Pahang, Semenanjung Malaysia)

AMAL NAJIHAH MUHAMAD NOR1,3, NUR HAIRUNNISA RAFAAI2 & SAIFUL ARIF ABDULLAH2,*

 

1Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan Malaysia

2Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3UMK-Tropical Rainforest Research Centre (UMK-TRaCe), Faculty of Earth Science, Pulau Banding, Gerik 33300, Perak, Malaysia

 

Diserahkan: 6 Mac 2023/Diterima: 12 Disember 2023

 

Abstract

In Peninsular Malaysia, the Master Plan of Ecological Linkages has proposed ecological corridors at Chini-Bera forests complex to connect the forest patches. However, the proposed corridors have been determined arbitrarily without evaluating the reliability of the landscape structure which may cause liability in conservation effort. Therefore, the objective of this study was to determine the potential ecological corridors by considering the reliability of landscape structure in Chini-Bera forests complex using Malayan tapir (Tapirus indicus) as a focal species. The tapir was chosen because it is one of the target large mammals in the master plan. In this study, three landscape structures, i.e., patch size, patch distance and landscape resistance were used as parameters in modelling the potential ecological corridors for tapirs. In the modelling, circuit theory, connectivity analysis and least-cost path were integrated using the geographic information systems and remote sensing platforms. The model has identified a total of 35 potential ecological corridors for tapir of which over 50% connect the large core areas while the other 25% connect the small core areas. Meanwhile, four corridors can be considered as priority corridor as their effective resistance below 1000 which indicate easy movement and high connectivity. The findings showed the importance to consider the reliability of the patch size, patch distance dan landscape resistance in determining the potential ecological corridors of wildlife to avoid liability in conservation effort. In addition, the integrated modelling approach contributes to a more concrete assessment of ecological corridors for effective wildlife conservation planning.

 

Keywords: Central forests spine; circuit theory; ecological corridor; least-cost path; sustainable development; wildlife conservation

 

Abstrak

Di Semenanjung Malaysia, Pelan Utama Rangkaian Ekologi telah mencadangkan koridor ekologi di kompleks hutan Chini-Bera untuk menghubungkan gugusan hutan. Walau bagaimanapun, koridor yang dicadangkan telah ditentukan sewenang-wenangnya tanpa menilai ketersediaan struktur landskap yang boleh menyebabkan liabiliti dalam usaha pemuliharaan. Oleh itu, objektif kajian ini adalah untuk menentukan koridor ekologi yang berpotensi dengan mengambil kira ketersediaan struktur landskap di kompleks hutan Chini-Bera menggunakan tapir Malaya (Tapirus indicus) sebagai spesies tumpuan. Tapir dipilih kerana ia merupakan salah satu mamalia besar sasaran dalam pelan utama. Dalam kajian ini, tiga struktur landskap, iaitu saiz gugusan, jarak gugusan dan rintangan landskap digunakan sebagai parameter dalam memodelkan koridor ekologi yang berpotensi untuk tapir. Dalam pemodelan, teori litar, analisis ketersambungan dan laluan kos minimum telah disepadukan menggunakan sistem maklumat geografi dan platform penderiaan jauh. Model ini telah mengenal pasti sejumlah 35 koridor ekologi yang berpotensi untuk tapir dengan lebih 50% menghubungkan kawasan teras besar manakala 25% lagi menghubungkan kawasan teras kecil. Sementara itu, empat koridor boleh dianggap sebagai koridor keutamaan kerana keberkesanan rintangannya di bawah 1000 yang menunjukkan kemudahan pergerakan dan ketersambungan yang tinggi. Hasil kajian menunjukkan kepentingan untuk mempertimbangkan ketersediaan saiz gugusan, jarak gugusan dan rintangan landskap dalam menentukan potensi koridor ekologi hidupan liar untuk mengelakkan liabiliti dalam usaha pemuliharaan. Di samping itu, pendekatan pemodelan bersepadu menyumbang kepada penilaian yang lebih tepat terhadap koridor ekologi untuk perancangan pemuliharaan hidupan liar yang berkesan.

 

Kata kunci: Koridor ekologi; laluan kos minimum; pembangunan mampan; pemuliharaan hidupan liar; teori litar; tulang belakang hutan tengah

 

RUJUKAN

Abdullah, S.A. & Hezri, A.A. 2008. From forest landscape to agricultural landscape in the developing tropical country of Malaysia: pattern, process, and their significance on policy. Environmental Management 42: 907-917.

Abouelezz, H.G., Donovan, T.M., Mickey, R.M., Murdoch, J.D., Freeman, M. & Royar, K. 2018. Landscape composition mediates movement and habitat selection in bobcats (Lynx rufus): Implications for conservation planning. Landscape Ecology 33(8): 1301-1318.

Adila, N., Sasidhran, S., Kamarudin, N., Puan, C.L., Azhar, B. & Lindenmayer, D.B. 2017. Effects of peat swamp logging and agricultural expansion on species richness of native mammals in Peninsular Malaysia. Basic and Applied Ecology 22: 1-10.

Adriaensen, F., Chardon, J.P., de Blust, G., Swinnen, E., Vilalba, S., Gulinck, H. & Matthysen, E. 2003. The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning 64: 233-247.

Beaujean, S., Nor, A.N.M., Brewer, T., Zamorano, J.G., Dumitriu, A.C., Harris, J. & Corstanje, R. 2021. A multistep approach to improving connectivity and co-use of spatial ecological networks in cities. Landscape Ecology 36: 2077-2093.

Belote, R.T., Dietz, M.S., McRae, B.H., Theobald, D.M., McClure, M.L., Irwin, G.H. & Aplet, G.H. 2016. Identifying corridors among large protected areas in the United States. PLoS ONE 11(4): e0154223.

Bennett, G. 2004. Integrating Biodiversity Conservation and Sustainable Use: Lessons Learned from Ecological Networks. IUCN, Gland, Switzerland, and Cambridge, UK. pp. Vi + 55.

Cook, E.A. 2002. Landscape structure indices for assessing urban ecological networks. Landscape and Urban Planning 58: 269-280.

Dudgeon, D. 2000. Large-scale hydrological changes in tropical Asia: Prospects for riverine biodiversity: The construction of large dams will have an impact on the biodiversity of tropical Asian rivers and their associated wetlands. BioScience 50(9): 793-806.

Dong, J., Peng, J., Liu, Y., Qiu, S. & Han, Y. 2020. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landscape and Urban Planning 199: 103815.

Department of Town and Country Planning (DTCP). 2005. National Physical Plan. Kuala Lumpur: Department of Town and Country Planning Peninsular Malaysia.

Department of Town and Country Planning (DTCP). 2009. CSF1: Master Plan for Ecological Lingkages. Kuala Lumpur: Department of Town and Country Planning Peninsular Malaysia.

Forman, R.T.T. 1995. Some general principles of landscape and regional ecology. Landscape Ecology 10: 133-142.

Khadijah-Ghani, S.A. 2010. Home range size, density estimation and food of Malayan Tapir (Tapirus indicus) at Krau Wildlife Reserve. Universiti Sains Malaysia (Unpublished dissertation).

Hampson, A.M. & Peterken, G.F. 1998. Enhancing the biodiversity of Scotland’s forest resource through the development of a network of forest habitats. Biodiversity and Conservation 7: 179-192.

Hilty, J., Worboys, G.L., Keeley, A., Woodley, S., Lausche, B., Locke, H., Carr, M., Pulsford I., Pittock, J., White, J.W., Theobald, D.M., Levine, J., Reuling, M., Watson, J.E.M., Ament, R. & Tabor, G.M. 2020. Guidelines for Conserving Connectivity through Ecological Networks and Corridors. Best Practice Protected Area Guidelines Series No. 30. Gland, Switzerland: IUCN.

Jain, A., Chong, K.Y., Chua, M.A.H. & Clements, G.R. 2014. Moving away from paper corridors in Southeast Asia. Conservation Biology 28(4): 889-891.

Jomo, K.S., Chang, Y.T. & Khoo, K.J. 2004. Deforesting Malaysia: The Political Economy and Social Ecology of Agriculture Expansion and Commercial Logging. New York: Zeb Books.

Kong, F., Wang, D., Yin, H., Dronova, I., Fei, F., Chen, J. & Li, M. 2021. Coupling urban 3‐D information and circuit theory to advance the development of urban ecological networks. Conservation Biology 35(4): 1140-1150.

Kwon, O.S., Kim, J.H. & Ra, J.H. 2021. Landscape ecological analysis of green network in urban area using circuit theory and least-cost path. Land 10(8): 847.

Leonard, P.B., Sutherland, R.W., Baldwin, R.F., Fedak, D.A., Carnes, R.G. & Montgomery, A.P. 2017. Landscape connectivity losses due to sea level rise and land use change. Animal Conservation 20(1): 80-90.

Long, A.M., Colon, M.R., Morrison, M.L. & Mathewson, H.A. 2021. Demonstration of a multi‐species, multi‐response state‐and‐transition model approach for wildlife management. Ecosphere 12(12): 1-22.

McRae, B.H. & Kavanagh, D.M. 2011. Linkage Mapper Connectivity Analysis Software. http://www.circuitscape.org/linkagemapper

McRae, B.H., Shah, V.B. & Mohapatra, T.K. 2013. Circuitscape 4 User Guide. The Nature Conservancy. http://www.circuitscape.org

Nor, A.N.M., Corstanje, R., Harris, J.A., Grafius, D.R. & Siriwardena, G.M. 2017. Ecological connectivity networks in rapidly expanding cities. Heliyon 3(6): e00325.

Reza, M.I.H., Rafaai, N.H. & Abdullah, S.A. 2022. Application of graph-based indices to map and develop a connectivity importance index for large mammal conservation in a tropical region: A case study in Selangor State, Peninsular Malaysia. Ecological Indicators 140: 109008.

Rizkalla, C.E. & Swihart, R.K. 2007. Explaining movement decisions of forest rodents in fragmented landscapes. Biological Conservation 140: 339-348.

Ruiz-González, A., Gurrutxaga, M., Cushman, S.A., Madeira, M.J., Randi, E. & Gomez-Moliner, B.J. 2014. Landscape genetics for the empirical assessment of resistance surfaces: The European pine marten (Martes martes) as a target-species of a regional ecological network. PLoS ONE 9(10): e110552.

Samantha, L.D., Tee, S.L., Kamarudin, N., Lechner, A.M. & Azhar, B. 2020. Assessing habitat requirements of Asian tapir in forestry landscapes: Implications for conservation. Global Ecology and Conservation 23: e01137.

Saura, S. & Torne, J. 2009. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environmental Modelling & Software 24: 135-139.

Sodhi, N.S., Lian, P.K., Clements, R., Wanger, T.C., Hill, J.K., Hamer, K.C., Clough, Y., Tscharntke, T., Posa, M.R.C. & Tien, M.L. 2010. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biological Conservation 143: 2375-2384.

Soule, M.E. 1991. Land use planning and wildlife maintenance: guidelines for conserving wildlife in an urban landscape. American Planning Association. Journal of the American Planning Association 57(3): 313.

Tan, C.K.W., Rocha, D.G., Clements, G.R., Brenes-Mora, E., Hedges, L., Kawanishi, K., Wan Mohamad, S., Rayan, D.M., Bolongan, G., Moore, J., Wadey, J., Campos-Arceiz, A. & Macdonald, D.W. 2017. Habitat use and predicted range for the mainland clouded leopard Neofelis nebulosi in Peninsular Malaysia. Biological Conservation 206: 65-74.

Traeholt, C., Novarino, W., bin Saaban, S., Shwe, N.M., Lynam, A., Zainuddin, Z., Simpson, B. & bin Mohd, S. 2016. Tapirus indicus. The IUCN Red List of Threatened Species 2016: e.T21472A45173636.https://dx.doi.org/10.2305/IUCN.UK.20161.RLTS.T21472A45173636.en

Uezu, A. & Metzger, J.P. 2016. Time-lag in responses of birds to Atlantic Forest fragmentation: Restoration opportunity and urgency. PLoS ONE 11(1): e0147909.

Vogt, P., Riitters, K.H., Iwanowski, M., Estreguil, C., Kozak, J. & Soille, P. 2007. Mapping landscape corridors. Ecological indicators 7(2): 481-488.

Wiens, J.A., Schooley, R.L. & Weeks Jr., R.D. 1997. Patchy landscapes and animal movements: Do beetles percolate? Oikos 78(2): 257-264.

Ye, H., Yang, Z. & Xu, X. 2020. Ecological corridors analysis based on MSPA and MCR model - A case study of the Tomur World Natural Heritage Region. Sustainability 12(3): 959.

 

*Pengarang untuk surat-menyurat; email: saiful@ukm.edu.my